mtio(4)
- NetBSD Manual Pages
MTIO(4) NetBSD Kernel Interfaces Manual MTIO(4)
NAME
mtio -- generic magnetic tape I/O interface
SYNOPSIS
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/mtio.h>
DESCRIPTION
Magnetic tape has been the computer system backup and data transfer
medium of choice for decades, because it has historically been cheaper in
cost per bit stored, and the formats have been designed for portability
and storage. However, tape drives have generally been the slowest mass
storage devices attached to any computer system.
Magnetic tape comes in a wide variety of formats, from classic 9-track,
through various Quarter Inch Cartridge (QIC) variants, to more modern
systems using 8mm video tape, and Digital Audio Tape (DAT). There have
also been a variety of proprietary tape systems, including DECtape, and
IBM 3480.
UNIX TAPE I/O
Regardless of the specific characteristics of the particular tape trans-
port mechanism (tape drive), UNIX tape I/O has two interfaces: "block"
and "raw". I/O through the block interface of a tape device is similar
to I/O through the block special device for a disk driver: the individual
read(2) and write(2) calls can be done in any amount of bytes, but all
data is buffered through the system buffer cache, and I/O to the device
is done in 1024 byte sized blocks. This limitation is sufficiently
restrictive that the block interface to tape devices is rarely used.
The "raw" interface differs in that all I/O can be done in arbitrary
sized blocks, within the limitations for the specific device and device
driver, and all I/O is synchronous. This is the most flexible interface,
but since there is very little that is handled automatically by the ker-
nel, user programs must implement specific magnetic tape handling rou-
tines, which puts the onus of correctness on the application programmer.
DEVICE NAME CONVENTIONS
Each magnetic tape subsystem has a couple of special devices associated
with it.
The block device is usually named for the driver, e.g. /dev/st0 for unit
zero of a st(4) SCSI tape drive.
The raw device name is the block device name with an "r" prepended, e.g.
/dev/rst0.
By default, the tape driver will rewind the tape drive when the device is
closed. To make it possible for multiple program invocations to sequen-
tially write multiple files on the same tape, a "no rewind on close"
device is provided, denoted by the letter "n" prepended to the name of
the device, e.g. /dev/nst0, /dev/nrst0.
The mt(1) command can be used to explicitly rewind, or otherwise position
a tape at a particular point with the no-rewind device.
FILE MARK HANDLING
Two end-of-file (EOF) markers mark the end of a tape (EOT), and one end-
of-file marker marks the end of a tape file.
By default, the tape driver will write two End Of File (EOF) marks and
rewind the tape when the device is closed after the last write.
If the tape is not to be rewound it is positioned with the head in
between the two tape marks, where the next write will over write the sec-
ond end-of-file marker.
All of the magnetic tape devices may be manipulated with the mt(1) com-
mand.
A number of ioctl(2) operations are available on raw magnetic tape.
Please see <sys/mtio.h> for their definitions.
The manual pages for specific tape device drivers should list their par-
ticular capabilities and limitations.
SEE ALSO
dd(1), mt(1), pax(1), tar(1), st(4), wt(4)
HISTORY
The mtio manual appeared in 4.2BSD.
BUGS
The status should be returned in a device independent format.
If and when NetBSD is updated to deal with non-512 byte per sector disk
media through the system buffer cache, perhaps a more sane tape interface
can be implemented.
NetBSD 10.99 January 14, 1999 NetBSD 10.99
Powered by man-cgi (2021-06-01).
Maintained for NetBSD
by Kimmo Suominen.
Based on man-cgi by Panagiotis Christias.