socket(2) - NetBSD Manual Pages

Command: Section: Arch: Collection:  
SOCKET(2)                 NetBSD System Calls Manual                 SOCKET(2)


NAME
socket -- create an endpoint for communication
LIBRARY
Standard C Library (libc, -lc)
SYNOPSIS
#include <sys/socket.h> int socket(int domain, int type, int protocol);
DESCRIPTION
socket() creates an endpoint for communication and returns a descriptor. The domain parameter specifies a communications domain within which com- munication will take place; this selects the protocol family which should be used. These families are defined in the include file <sys/socket.h>. The currently understood formats are: PF_LOCAL local (previously UNIX) domain protocols PF_INET ARPA Internet protocols PF_INET6 IPv6 (Internet Protocol version 6) protocols PF_NS Xerox Network Systems protocols PF_APPLETALK AppleTalk protocols PF_BLUETOOTH Bluetooth protocols PF_CAN CAN bus protocols The socket has the indicated type, which specifies the semantics of com- munication. Currently defined types are: SOCK_STREAM SOCK_DGRAM SOCK_RAW SOCK_SEQPACKET SOCK_RDM The following flags can be or'ed to the type to condition the returned file descriptor: The following flags are valid: SOCK_CLOEXEC Set the close on exec property. SOCK_NONBLOCK Sets non-blocking I/O. SOCK_NOSIGPIPE Return EPIPE instead of raising SIGPIPE. A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams. An out-of-band data transmission mechanism may be sup- ported. A SOCK_DGRAM socket supports datagrams (connectionless, unreli- able messages of a fixed (typically small) maximum length). A SOCK_SEQPACKET socket may provide a sequenced, reliable, two-way connec- tion-based data transmission path for datagrams of fixed maximum length; a consumer may be required to read an entire packet with each read system call. This facility is protocol specific, and presently implemented only for PF_NS. SOCK_RAW sockets provide access to internal network protocols and interfaces. The types SOCK_RAW, which is available only to the super-user, and SOCK_RDM, which is planned, but not yet implemented, are not described here. The protocol specifies a particular protocol to be used with the socket. Normally only a single protocol exists to support a particular socket type within a given protocol family. However, it is possible that many protocols may exist, in which case a particular protocol must be speci- fied in this manner. The protocol number to use is particular to the communication domain in which communication is to take place; see protocols(5). Sockets of type SOCK_STREAM are full-duplex byte streams. A stream socket must be in a connected state before any data may be sent or received on it. A connection to another socket is created with a connect(2) call. Once connected, data may be transferred using read(2) and write(2) calls or some variant of the send(2) and recv(2) calls. When a session has been completed a close(2) may be performed. Out-of- band data may also be transmitted as described in send(2) and received as described in recv(2). The communications protocols used to implement a SOCK_STREAM ensure that data is not lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted within a reasonable length of time, then the connection is considered broken and calls will indicate an error with -1 returns and with ETIMEDOUT as the specific code in the global variable errno. The protocols optionally keep sockets ``warm'' by forcing transmissions roughly every minute in the absence of other activity. An error is then indicated if no response can be elicited on an otherwise idle connection for an extended period (e.g., 5 minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this causes naive processes, which do not handle the sig- nal, to exit. SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sock- ets. The only difference is that read(2) calls will return only the amount of data requested, and any remaining in the arriving packet will be discarded. SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspon- dents named in send(2) calls. Datagrams are generally received with recvfrom(2), which returns the next datagram with its return address. An fcntl(2) call can be used to specify a process group to receive a SIGURG signal when the out-of-band data arrives. It may also enable non- blocking I/O and asynchronous notification of I/O events via SIGIO. The operation of sockets is controlled by socket level options. These options are defined in the file <sys/socket.h>. The setsockopt(2) and getsockopt(2) system calls are used to set and get options, respectively.
RETURN VALUES
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the socket.
ERRORS
The socket() call fails if: [EACCES] Permission to create a socket of the specified type and/or protocol is denied. [EAFNOSUPPORT] The address family (domain) is not supported or the specified domain is not supported by this protocol family. [EMFILE] The per-process descriptor table is full. [ENFILE] The system file table is full. [ENOBUFS] Insufficient buffer space is available. The socket cannot be created until sufficient resources are freed. [EPROTONOSUPPORT] The protocol family is not supported or the specified protocol is not supported within this domain. [EPROTOTYPE] The socket type is not supported by the protocol.
SEE ALSO
accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), poll(2), read(2), recv(2), select(2), send(2), setsockopt(2), shutdown(2), socketpair(2), write(2), getprotoent(3) Stuart Sechrest, An Introductory 4.4BSD Interprocess Communication Tutorial. (see /usr/share/doc/psd/20.ipctut) Samuel J. Leffler, Robert S. Fabry, William N. Joy, Phil Lapsley, Steve Miller, and Chris Torek, Advanced 4.4BSD IPC Tutorial. (see /usr/share/doc/psd/21.ipc)
HISTORY
The socket() function call appeared in 4.2BSD. NetBSD 8.0 April 27, 2017 NetBSD 8.0
Powered by man-cgi 1.15, Panagiotis Christias
Modified for NetBSD by Kimmo Suominen